Drosophila homologs of two mammalian intracellular Ca(2+)-release channels: identification and expression patterns of the inositol 1,4,5-triphosphate and the ryanodine receptor genes.

نویسندگان

  • G Hasan
  • M Rosbash
چکیده

We have identified and cloned portions of two Drosophila genes homologous to two classes of mammalian intracellular Ca(2+)-release channels, the ryanodine receptor and the inositol 1,4,5-triphosphate (IP3) receptor. The Drosophila ryanodine receptor gene (dry) encodes an approx. 15 kb mRNA. It is expressed in the mesoderm of early stage-9 embryos and subsequently in somatic muscles and their precursor cells. In adults, dry mRNA was detected in tubular muscles and at a lower level in neuronal tissues. Embryonic expression of the Drosophila IP3 receptor gene (dip) appears more dynamic and is associated with developing anterior sense organs. In adults, dip expression occurs in several tissues, and relatively high levels of dip mRNA in adult antennae suggest a role for this gene product during olfactory transduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N-terminus oligomerization is conserved in intracellular calcium release channels

Oligomerization of all three mammalian ryanodine receptor isoforms, a structural requirement for normal intracellular Ca2+ release channel function, is displayed by the discrete N-terminal domain which assembles into homo- and hetero-tetramers. This is demonstrated in yeast, mammalian cells and native tissue by complementary yeast two-hybrid, chemical cross-linking and co-immunoprecipitation as...

متن کامل

Identification of Intracellular and Plasma Membrane Calcium Channel Homologues in Pathogenic Parasites

Ca(2+) channels regulate many crucial processes within cells and their abnormal activity can be damaging to cell survival, suggesting that they might represent attractive therapeutic targets in pathogenic organisms. Parasitic diseases such as malaria, leishmaniasis, trypanosomiasis and schistosomiasis are responsible for millions of deaths each year worldwide. The genomes of many pathogenic par...

متن کامل

Differential expression and regulation of ryanodine receptor and myo-inositol 1,4,5-trisphosphate receptor Ca2+ release channels in mammalian tissues and cell lines.

Ryanodine receptors (RyRs) and Ins(1,4,5)P3 receptors (Ins(1,4, 5)P3Rs) represent two multigene families of channel proteins that mediate the release of Ca2+ ions from intracellular stores. In the present study, the expression patterns of these channel proteins in mammalian cell lines and tissues were investigated by using isoform-specific antibodies. All cell lines examined expressed two or mo...

متن کامل

Inositol 1,4,5-triphosphate-evoked responses in midbrain dopamine neurons.

Synaptically released glutamate evokes slow IPSPs mediated by metabotropic glutamate receptors (mGluRs) in midbrain dopamine neurons. These mGluR IPSPs are caused by release of Ca(2+) from intracellular stores and subsequent activation of small-conductance Ca(2+)-activated K(+) channels (SK channels). To further investigate the intracellular mechanisms involved, the effect of photolyzing intrac...

متن کامل

How and why spermatozoa cause calcium oscillations in mammalian oocytes.

Relationship between latency and period for 5-hydroxytryptamine-induced membrane responses in the Calliphora salivary gland. (1993) Fertilization and thimerosal stimulate similar calcium spiking patterns in mouse oocytes but by separate mechanisms. (19%) Phospholipase C in mouse oocytes: characterisation of ,p" and y isoforms and their possible involvement in sperm-induced Ca 2+ spiking. (1994)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 116 4  شماره 

صفحات  -

تاریخ انتشار 1992